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4.2.8  Unit End Questions 

4.2.9  Bibliography 

4.2.1 OBJECTIVES 

After this chapter, you should be able to: 

 Understand the local search algorithms and optimization problems. 

 Understand searching techniques of non-deterministic action. 

 Familiar with partial observation. 

 Understand online search agents and unknown environments. 

4.2.2 INTRODUCTION 

This chapter covers algorithms that perform purely local search in the state 

space, evaluating and modifying one or more current states rather than 

systematically exploring paths from an initial state. These algorithms are 

suitable for problems in which all that matters is the solution state, not the 

path cost to reach it. The family of local search algorithms includes 

methods inspired by statistical physics (simulated annealing) and 

evolutionary biology (genetic algorithms). 

The search algorithms we have seen so far, more often concentrate on path 

through which the goal is reached. But the problem does not demand the 

path of the solution and it expects only the final configuration of the 

solution then we have different types of problem to solve. 

Local search algorithm operates using single path instead of multiple 

paths. They generally move to neighbours of the current state. Local 

algorithms use very little and constant amount of memory. Such kind of 

algorithms have ability to figure out reasonable solution for infinite state 

spaces. 

They are useful for solving pure optimization problems. For search where 

path does not matter, Local search algorithms can be used, which operates 

by using a single current state and generally move only to neighbours of 

the state.  

4.2.3 LOCAL SEARCH ALGORITHMS  

• Algorithms that perform purely local search in the state space, 

evaluating and modifying one or more current states rather than 

systematically exploring paths from an initial state. 

• These algorithms are suitable for problems in which all that matters is 

the solution state, not the path cost to reach it. 

•  The family of local search algorithms includes methods inspired by 

statistical physics (simulated annealing) and evolutionary biology 

(genetic algorithms). 
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• This systematicity is achieved by keeping one or more paths in memory 

and by recording which alternatives have been explored at each point 

along the path. 

• When a goal is found, the path to that goal also constitutes a solution to 

the problem. 

•  In many problems, however, the path to the goal is irrelevant. 

• Local search algorithms operate using CURRENT NODE a single 

current node (rather than multiple paths) and generally move only to 

neighbors of that node. 

• Local Search Algorithm use very little memory—usually a constant 

amount; and they can often find reasonable solutions in large or infinite 

(continuous) state spaces for which systematic algorithms are 

unsuitable. 

• It is also useful for solving pure optimization problems, in which the 

aim is to find the best state according to an objective function. 

• Hill Climbing is a technique to solve certain optimization problems. 

• In these techniques, we start with a sub-optimal solution and the 

solution is improved repeatedly until some condition is maximized. 

• The idea of starting with a sub-optimal solution is compared to walking 

up the hill, and finally maximizing some condition is compared to 

reaching the top of the hill. 

Algorithm: 

1)  Evaluate the initial state. If it is goal state then return and quit. 

2)  Loop until a solution is found or there are no new operators left. 

3)  Select & apply new operator. 

4) Evaluate new state 

If it is goal state, then quit. 

If it is better than current state then makes it new current state. 

If it is not better than current then go to step 2. 

4.2.3.1 Hill Climbing search: 

It is so called because of the way the nodes are selected for expansion. At 

each point search path, successor node that appears to lead most quickly to 

the top of the hill is selected for exploration. It terminates when it reaches 

a “peak” where no neighbour has a higher value. This algorithm doesn’t 

maintain a search tree so the data structure for the current node need only 

record the state and the value of the objective function. Hill Climbing 

Algorithm is sometimes called as a greedy local search because it grabs a 

good neighbour state without thinking ahead about where to go next. 

Unfortunately, hill climbing suffers from following problems: 
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This is shown in Figure 4.2.1 

 

Fig. 4.2.1 Hill Climbing 

 Local maxima: 

Local maximum is a state which is better than its neighbour states, but 

there is also another state which is higher than it. They are also called as 

foot-hills. It is shown in Fig. 4.2.2 

 

                                 Local Maximum 

 

 

 

 

 

Fig. 4.2.2 Local maximum or Foot Hill 

Solution to this problem: 

Backtracking technique can be a solution of the local maximum in state 

space landscape. Create a list of the promising path so that the algorithm 

can backtrack the search space and explore other paths as well. 

 Plateau: 

It is a flat area of the search space in which a whole set of neighbouring 

states (nodes) have the same heuristic value. A plateau is shown in Fig. 

4.2.3. 

 

  

          Plateau/ Flat maximum 
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Fig 4.2.3 Plateau 

Solution to this problem: 

The solution for the plateau is to take big steps or very little steps while 

searching, to solve the problem. Randomly select a state which is far away 

from the current state so it is possible that the algorithm could find non-

plateau region. 

Another solution is to apply small steps several times in the same 

direction. 

 Ridge: 

It’s an area which is higher than surrounding states but it cannot be 

reached in a single move. It is an area of the search space which is higher 

than the surrounding areas and that itself has a slope. Ridge is shown in 

Fig. 4.2.4. 

  Ridge 

 

 

 

Fig. 4.2.4 Ridge 

 

 

Solution to this problem: 

Trying different paths at the same time is a solution. With the use of 

bidirectional search, or by moving in different directions, we can improve 

this problem. 

Advantages of Hill Climbing: 

It can be used in continuous as well as discrete domains. 

Disadvantages of Hill Climbing: 

It is not an efficient method. 

It is not suitable for those problems whose value of heuristic function 

drops off suddenly when solution may be in sight. 
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It is local method as it looks at the immediate solution and decides about 

the next step to be taken rather than exploring all consequences before 

taking a move. 

4.2.3.2 Simulated Annealing: 

A hill-climbing algorithm which never makes a move towards a lower 

value guaranteed to be incomplete because it can get stuck on a local 

maximum. And if algorithm applies a random walk, by moving a 

successor, then it may complete but not efficient. Simulated Annealing is 

an algorithm which yields both efficiency and completeness. In 

mechanical term Annealing is a process of hardening a metal or glass to a 

high temperature then cooling gradually, so this allows the metal to reach 

a low-energy crystalline state.  

The same process is used in simulated annealing in which the algorithm 

picks a random move, instead of picking the best move. If the random 

move improves the state, then it follows the same path. Otherwise, the 

algorithm follows the path which has a probability of less than 1 or it 

moves downhill and chooses another path. 

Algorithm: 

1.  Evaluate the initial state. If it is also goal state, then return it and quit. 

Otherwise, continue with the initial state as the current state. 

2.  Initialize BEST-SO-FAR to the current state. 

3.  Initialize T according to the annealing schedule. 

4.  Loop until a solution is found or until there are no new operators left 

to be applied in the current state. 

a)  Select an operator that has not yet been applied to the current 

state and apply it to produce a new state. 

b)  Evaluate the new state. Compute 

  E = (value of current)- (value of new state) 

 If the new state is a goal state, then return it and quit. 

 If it is not goal state but is better than the current state, then make 

it the current state. Also set BEST-SO-FAR to this new state. 

 If it is not better than current state, then make it the current state 

with probability p’ as defined above. This step is usually 

implemented by invoking a random number generator to produce 

a number in the range [0, 1]. If that number is less than p’ then 

the move is accepted. Otherwise, do nothing. 

c) Revise T as necessary according to the annealing schedule. 

5. Return BEST-SO-FAR, as the answer. 
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To implement this revised algorithm, it is necessary to select an annealing 

schedule, which has three components. The first is the initial value to be 

used for temperature. The second is the criteria that will be used to decide 

when the temperature of the system should be reduced. The third is a 

amount by which the temperature will be reduced each time it is changed. 

There may also be a fourth component of the schedule, namely, when to 

quit. Simulated annealing is often used to solve problems in which the 

number of moves from a given sate is very large. For such problems, it 

may not make sense to try all possible moves. 

4.2.3.3 Local beam search: 

In this algorithm, it holds k number of states at any given time. At the 

start, these states are generated randomly. The successors of these k states 

are computed with the help of objective function. If any of these 

successors is the maximum value of the objective function, then the 

algorithm stops. Otherwise, the (initial k states and k number of successors 

of the states = 2k) states are placed in a pool. The pool is then sorted 

numerically. The highest k states are selected as new initial states. This 

process continues until a maximum value is reached. function Beam 

Search (problem, k), returns a solution state.  

Start with k randomly generated states 

Loop 

 Generate all successors of all k states 

 If any of the states =solution, then return the state 

 Else select the k best successors 

End 

4.2.3.4 Genetic algorithms: 

Genetic Algorithms (GAs) are adaptive heuristic search algorithms that 

belong to the larger part of evolutionary algorithms. Genetic algorithms 

are based on the ideas of natural selection and genetics. These are 

intelligent exploitation of random search provided with historical data to 

direct the search into the region of better performance in solution space. 

They are commonly used to generate high-quality solutions for 

optimization problems and search problems. 

Genetic algorithms simulate the process of natural selection which means 

those species who can adapt to changes in their environment are able to 

survive and reproduce and go to next generation. In simple words, they 

simulate “survival of the fittest” among individual of consecutive 

generation for solving a problem. Each generation consist of a population 

of individuals and each individual represents a point in search space and 

possible solution. Each individual is represented as a string of 

character/integer/float/bits. This string is analogous to the Chromosome. 

Steps of genetic algorithms: 

Initial Population:  
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The process begins with a set of individuals which is called a Population. 

Each individual is a solution to the problem you want to solve. An 

individual is characterized by a set of parameters (variables) known as 

Genes. Genes are joined into a string to form a Chromosome (solution). In 

a genetic algorithm, the set of genes of an individual is represented using a 

string, in terms of an alphabet. Usually, binary values are used (string of 

1s and 0s). We say that we encode the genes in a chromosome. 

Fitness Function:  

The fitness function determines how fit an individual is (the ability of an 

individual to compete with other individuals). It gives a fitness score to 

each individual. The probability that an individual will be selected for 

reproduction is based on its fitness score.  

Selection:  

The idea of selection phase is to select the fittest individuals and let them 

pass their genes to the next generation. Two pairs of individuals (parents) 

are selected based on their fitness scores. Individuals with high fitness 

have more chance to be selected for reproduction. 

Crossover: 

It is the most significant phase in a genetic algorithm. For each pair of 

parents to be mated, a crossover point is chosen at random from within the 

genes. Offspring are created by exchanging the genes of parents among 

themselves until the crossover point is reached.  

Mutation:  

In certain new offspring formed, some of their genes can be subjected to a 

mutation with a low random probability. This implies that some of the bits 

in the bit string can be flipped. 

 

Fig. 4.2.5 The genetic algorithm, illustrated for digit strings representing 

8-queens states. The initial population in (a) is ranked by the fitness 

function in (b), resulting in pairs for mating in (c). They produce offspring 

in (d), which are subject to mutation in (e) 

4.2.4 SEARCHING WITH NON-DETERMINISTIC 

ACTION 
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When the environment is either partially observable or nondeterministic 

(or both), precepts become useful. When the environment is 

nondeterministic, precepts tell the agent which of the possible outcomes of 

its actions has actually occurred. In both cases, the future precepts cannot 

be determined in advance and the agent’s future actions will depend on 

those future precepts. So, the solution to a problem is not a sequence but a 

contingency plan (also known as a strategy) that specifies what to do 

depending on what precepts are received. 

4.2.4.1 The erratic vacuum world: 

There are three actions- Left, right and Suck. And the goal is to clean up 

all the dirt.  

 

Fig. 4.2.6 The eight possible states of the vacuum world; states 7 and 8 

are goal states. 

 

In the erratic vacuum world, the Suck action works as follows:  

•  When applied to a dirty square the action cleans the square and 

sometimes cleans up dirt in an adjacent square, too.  

•  When applied to a clean square the action sometimes deposits dirt on 

the carpet.  

•  a contingency plan such as the following: 

[Suck, if State = 5 then [Right, Suck] else [ ]] 

If the environment is observable, deterministic, and completely known, 

then the problem is trivially solvable by any of the algorithms. 

For example, if the initial state is 1, then the action sequence [Suck, Right, 

Suck] will reach a goal state, 8. Thus, solutions for nondeterministic 

problems can contain nested if–then–else statements; 
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4.2.4.2 AND- OR search trees: 

A solution to a problem can be obtained by decomposing it into smaller 

sub-problems. Each of this sub-problem can then be solved to get its 

solution. These sub-solutions can then be recombined to get a solution as a 

whole. OR graph finds a single path. 

AND arc may point to any number of successor nodes, all of which must 

be solved in order for an arc to point a solution. This is actually called as 

an AND-OR graph or AND/OR tree. 

 

Fig. 4.2.7 An algorithm for searching AND–OR graphs generated by 

nondeterministic environments. 

Figure 4.2.8 gives a recursive, depth-first algorithm for AND–OR graph 

search. One key aspect of the algorithm is the way in which it deals with 

cycles, which often arise in nondeterministic problems (e.g., if an action 

sometimes has no effect or if an unintended effect can be corrected). If the 

current state is identical to a state on the path from the root, then it returns 

with failure. This doesn’t mean that there is no solution from the current 

state; it simply means that if there is a noncyclic solution, it must be 

reachable from the earlier incarnation of the current state, so the new 

incarnation can be discarded. With this check, we ensure that the 

algorithm terminates in every finite state space, because every path must 

reach a goal, a dead end, or a repeated state. 

Example. 

 

 

 

 

 

  

 

 

Fig. 4.2.8 AND/OR graph example 

Goal: Buy a bike 

Goal= Get a bike 

Goal: Steal a bike Goal: Get some 

money 
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4.2.5 SEARCHING WITH PARTIAL OBSERVATIONS: 

when an environment is partially observable, an agent can be in one of 

several possible states. An action leads to one of several possible 

outcomes. 

To solve these problems, an agent maintains a belief state that represent 

the agent’s current belief about the possible physical state it might be in, 

given the sequence of actions and percepts up to that point. 

Agents percepts cannot pin down the exact state the agent is in 

Let Agents have Belief states 

◦ Search for a sequence of belief states that leads to a goal 

◦ Search for a plan that leads to a goal 

Sensor-less vacuum world 

Assume belief states are the same but no location or dust sensors 

Initial state = {1, 2, 3, 4, 5, 6, 7, 8} 

Action: Right 

Result = {2, 4, 6, 8} 

Right, Suck 

Result = {4, 8} 

Right, Suck, Left, Suck 

Result = {7} guaranteed! 

 

Fig. 4.2.9 Sensor less vacuum world 
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4.2.5.1 Searching with no observation: 

It is instructive to see how the belief-state search problem is constructed. 

Suppose the underlying physical problem P is defined by ACTIONSP, 

RESULTP, GOAL-TESTP, and STEP-COSTP.  

Then we can define the corresponding sensor less problem as follows: 

• Belief states: The entire belief-state space contains every possible set 

of physical states. If P has N states, then the sensor less problem has up 

to 2N states, although many may be unreachable from the initial state.  

• Initial state: Typically, the set of all states in P, although in some cases 

the agent will have more knowledge than this. 

• Actions: This is slightly tricky. Suppose the agent is in belief state b = 

{s1, s2}, but ACTIONS P(s1) ≠ ACTIONS (s2); then the agent is 

unsure of which actions are legal. 

 Transition model: The agent doesn’t know which state in the belief 

state is the right one; so as far as it knows, it might get to any of the 

states resulting from applying the action to one of the physical states in 

the belief state. 

 Goal test: The agent wants a plan that is sure to work, which means 

that a belief state satisfies the goal only if all the physical states in it 

satisfy GOAL-TEST P. The agent may accidentally achieve the goal 

earlier, but it won’t know that it has done so. 

 Path cost: This is also tricky. If the same action can have different 

costs in different states, then the cost of taking an action in a given 

belief state could be one of several values. 

 

Fig. 4.2.10 (a) Predicting the next belief state for the sensorless 

vacuum world with a deterministic action, right. (b) Prediction for the 

same belief state and action in the slippery version of the sensorless 

vacuum world. 

4.2.5.2 Searching with observations: 

For a general partially observable problem, we have to specify how the 

environment generates percepts for the agent. For example, we might 

define the local-sensing vacuum world to be one in which the agent has a 

position sensor and a local dirt sensor but has no sensor capable of 
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detecting dirt in other squares. The formal problem specification includes 

a PERCEPT(s) function that returns the percept received in a given state. 

(If sensing is nondeterministic, then we use a PERCEPTS function that 

returns a set of possible percepts.) For example, in the local-sensing 

vacuum world, the PERCEPT in state 1 is [A, Dirty]. Fully observable 

problems are a special case in which PERCEPT(s) = s for every state s, 

while sensorless problems are a special case in which PERCEPT(s) = null. 

• The ACTIONS, STEP-COST, and GOAL-TEST are constructed from 

the underlying physical problem just as for sensorless problems, but 

the transition model is a bit more complicated. 

• The prediction stage is the same as for sensorless problems: given the 

action a in belief state b, the predicted belief state is ˆb = PREDICT 

(b, a). 

• The observation prediction stage determines the set of percepts o that 

could be observed in the predicted belief state: POSSIBLE-

PERCEPTS (ˆb) = {o : o = PERCEPT(s) and s ∈ ˆb} .  

• The update stage determines, for each possible percept, the belief state 

that would result from the percept. The new belief state bo is just the 

set of states in ˆb that could have produced the percept: bo = 

UPDATE (ˆb, o) = {s : o = PERCEPT(s) and s ∈ ˆb}. 

• Putting these three stages together, we obtain the possible belief states 

resulting from a given action and the subsequent possible percepts: 

RESULTS (b, a) = {bo : bo = UPDATE(PREDICT(b, a), o) and o ∈ 

POSSIBLE-PERCEPTS(PREDICT(b, a))} . 

 

 

Fig.4.2.10 Two example of transitions in local-sensing vacuum worlds. (a) 

In the deterministic world, Right is applied in the initial belief state, 

resulting in a new belief state with two possible physical states; for those 

states, the possible percepts are [B, Dirty] and [B, Clean], leading to two 

belief states, each of which is a singleton. (b) In the slippery world, Right 

is applied in the initial belief state, giving a new belief state with four 

physical states; for those states, the possible percepts are [A, Dirty], [B, 

Dirty], and [B, Clean], leading to three belief states as shown. 

4.2.5.3 Solving partially observable problems: 

The preceding section showed how to derive the RESULTS function for a 

nondeterministic belief-state problem from an underlying physical 

problem and the PERCEPT function. 

To solve these problems, an agent maintains a belief state that represent 

the agent's current belief about the possible physical state it might be in, 

given the sequence of actions and percepts up to that point.  

Agent’s percepts cannot pin down the exact state the agent is in 

Let Agents have Belief states 
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 Search for a sequence of belief states that leads to a goal 

 Search for a plan that leads to a goal 

For such formulation, the AND-OR search algorithm can be applied 

directly to derive a solution. Figure 4.2.11 shows part of the search tree for 

the local-sensing vacuum world, assuming an initial percept [A, Dirty]. 

The solution is the conditional plan [Suck, Right, if B state = {6} then 

Suck else [ ]] . 

 

Fig. 4.2.11 AND -OR search tree 

4.4.4 An agent for partially observable environments: 

The design of a problem-solving agent for partially observable 

environments is quite similar to the simple problem-solving agent. the 

agent formulates a problem, calls a search algorithm (such as AND-OR-

GRAPH-SEARCH) to solve it, and executes the solution. There are two 

main differences. First, the solution to a problem will be a conditional plan 

rather than a sequence; if the first step is an if–then–else expression, the 

agent will need to test the condition in the if-part and execute the then-part 

or the else-part accordingly. Second, the agent will need to maintain its 

belief state as it performs actions and receives percepts. 

 

Fig. 4.2.12 Two prediction–update cycles of belief-state maintenance in 

the kindergarten vacuum world with local sensing. 

4.2.6 ONLINE SEARCH AGENTS AND UNKNOWN 

ENVIRONMENTS 

So far, we have concentrated on agents that use offline search algorithms. 

They compute a complete solution before setting foot in the real world and 

then execute the solution. In contrast, an online search agent interleaves 
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computation and action: first it takes an action, then it observes the 

environment and computes the next action. Online search is a good idea in 

dynamic or semi dynamic domains—domains where there is a penalty for 

sitting around and computing too long.  

Online search is also helpful in nondeterministic domains because it 

allows the agent to focus its computational efforts on the contingencies 

that actually arise rather than those that might happen but probably won’t. 

Of course, there is a trade-off: the more an agent plans ahead, the less 

often it will find itself up the creek without a paddle. 

Online search is a necessary idea for unknown environments, where the 

agent does not know what states exist or what its actions do. In this state 

of ignorance, the agent faces an exploration problem and must use its 

actions as experiments in order to learn enough to make deliberation 

worthwhile.  

The canonical example of online search is a robot that is placed in a new 

building and must explore it to build a map that it can use for getting from 

A to B. 

4.2.6.1 Online search problem: 

An online search problem must be solved by an agent executing actions, 

rather than by pure computation. online search agents can build a map and 

find a goal if one exists. 

We assume a deterministic and fully observable environment but we 

stipulate that the agent knows only the following: 

   

1. ACTIONS(s) 

2. The step-cost function  

3. GOAL-TEST(s). 

For example, in the maze problem shown in Figure, the agent does not 

know that going Up from (1,1) leads to (1,2); nor, having done that, does it 

know that going Down will take it back to (1,1). 

 Necessary in unknown environments 

 Robot localization in an unknown environment (no map) 

 Does not know about obstacles, where the goal is, that UP from (1,1) 

goes to (1, 2) 

 Once in (1, 2) does not know that down will go to (1, 1) 

 Some knowledge might be available 

 If location of goal is known, might use Manhattan distance heuristic  

 Competitive Ratio = Cost of shortest path without exploration/Cost of 

actual agent path 

 Irreversible actions can lead to dead ends and CR can become infinite. 
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 Hill- Climbing is already an online search algorithm but stops at local 

optimal. 

 

Fig. 4.2.13 A simple maze problem 

4.2.6.2 Online search agents: 

After each action, an online agent receives a percept telling it what state it 

has reached; from this information, it can augment its map of the 

environment. An online algorithm, on the other hand, can discover 

successors only for a node that it physically occupies.  

To avoid traveling all the way across the tree to expand the next node, it 

seems better to expand nodes in a local order. Depth-first search has 

exactly this property because (except when backtracking) the next node 

expanded is a child of the previous node expanded. 

An online depth-first search agent is shown in Figure 4.2.14 

 

 

Fig. 4.2.14 An online search agent that uses depth-first exploration. The 

agent is applicable only in state spaces in which every action can be 

“undone” by some other action 

It is fairly easy to see that the agent will, in the worst case, end up 

traversing every link in the state space exactly twice. For exploration, this 

is optimal; for finding a goal, on the other hand, the agent’s competitive 
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ratio could be arbitrarily bad if it goes off on a long excursion when there 

is a goal right next to the initial state.  

Because of its method of backtracking, ONLINE-DFS-AGENT works 

only in state spaces where the actions are reversible. There are slightly 

more complex algorithms that work in general state spaces, but no such 

algorithm has a bounded competitive ratio. 

4.2.6.3 Online local search: 

Like depth-first search, hill-climbing search has the property of locality in 

its node expansions. In fact, because it keeps just one current state in 

memory, hill-climbing search is already an online search algorithm! 

Unfortunately, it is not very useful in its simplest form because it leaves 

the agent sitting at local maxima with nowhere to go. Moreover, random 

restarts cannot be used, because the agent cannot transport itself to a new 

state. 

Instead of random restarts, one might consider using a random walk to 

explore the environment. A random walk simply selects at random one of 

the available actions from the current state; preference can be given to 

actions that have not yet been tried. It is easy to prove that a random walk 

will eventually find a goal or complete its exploration, provided that the 

space is finite. On the other hand, the process can be very slow. 

 

Fig. 4.2.15 An environment in which a random walk will take 

exponentially many steps to find the goal 

4.2.7 SUMMARY 

This chapter has examined search algorithms for problems beyond the 

“classical” case of finding the shortest path to a goal in an observable, 

deterministic, discrete environment. Local search methods such as hill 

climbing operate on complete-state formulations, keeping only a small 

number of nodes in memory. Several stochastic algorithms have been 

developed, including simulated annealing, which returns optimal solutions 

when given an appropriate cooling schedule. 

A genetic algorithm is a stochastic hill-climbing search in which a large 

population of states is maintained. New states are generated by mutation 

and by crossover, which combines pairs of states from the population. 

In nondeterministic environments, agents can apply AND–OR search to 

generate contingent plans that reach the goal regardless of which outcomes 

occur during execution.  
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When the environment is partially observable, the belief state represents 

the set of possible states that the agent might be in. Standard search 

algorithms can be applied directly to belief-state space to solve sensor less 

problems, and belief-state AND–OR search can solve general partially 

observable problems. 

4.2.8 UNIT END QUESTIONS 

1  What do you mean by local maxima with respect to search technique? 

2  Explain Hill Climbing Algorithm. 

3  Explain AO* Algorithm. 

4  Explain a searching with nondeterministic action. 

5  Explain searching with partial observations. 

6  Write a note on simulated annealing. 

7  Explain a local search algorithm. 

8  Write a note on online search agents. 

9  Write a note on unknown environments. 

10  Consider the sensorless version of the erratic vacuum world. Draw the 

belief-state space reachable from the initial belief state {1, 2, 3, 4, 5, 

6, 7, 8}, and explain why the problem is unsolvable. 
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